Clustering Techniques Analysis for Microarray Data
نویسندگان
چکیده
Microarray data is gene expression data which consists of the protein level of various genes for some samples. It is a high dimensional data. High dimensionality is a curse for the analysis of gene expression data. Thus gene selection process is used in which most informative genes are selected from the pool of gene expression data set. All the genes are not relevant in each case. First we need to select those genes which are relevant as well as there should be least redundancy among them. For this purpose various approaches can be used such as: Filter methods, wrapper methods, embedded approach and clustering. In this paper embedded approach for gene selection and clustering method will be used for performing the sample clustering to refine the classification and will be compared with each other on the basis of various parameters. KeywordsClustering; Microarray Data; Gene Selection; Data Mining; Statistical Analysis
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملبه کارگیری روشهای خوشهبندی در ریزآرایه DNA
Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...
متن کاملData Complexity in Clustering Analysis of Gene Microarray Expression Profiles
The increasing application of microarray technology is generating large amounts of high dimensional gene expression data. Genes participating in the same biological process tend to have similar expression patterns, and clustering is one of the most useful and efficient methods for identifying these patterns. Due to the complexity of microarray profiles, there are some limitations in directly ap...
متن کاملIEEE Paper Template in A4 (V1)
n data mining, clustering techniques have been applied in cellular processes, gene regulation, sub types of cells and gene function. Clustering in microarray gene expression handles various experimental conditions in various algorithms by using different data sets. This paper focuses the study on the clustering of gene expression data using the data sets such as yeast data, yeast cell-cycle, se...
متن کاملMfuzz: A software package for soft clustering of microarray data
UNLABELLED For the analysis of microarray data, clustering techniques are frequently used. Most of such methods are based on hard clustering of data wherein one gene (or sample) is assigned to exactly one cluster. Hard clustering, however, suffers from several drawbacks such as sensitivity to noise and information loss. In contrast, soft clustering methods can assign a gene to several clusters....
متن کاملRobust DNA Microarray Clustering Techniques for Oncological Diagnosis
Machine learning techniques are increasingly popular tools for understanding complex biological data. Prior research has demonstrated the power of simple statistical clustering algorithms for disease class discovery and prediction. In this work we examine the efficacy of spectral and divisive clustering on gene expression microarray data. In particular we consider simultaneous expression cluste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014